Главная » Математика для вузов » Нелинейная вычислительная механика прочности. В 5 томах. Том 1. Модели и методы. Образование и развитие дефектов
Нелинейная вычислительная механика прочности. В 5 томах. Том 1. Модели и методы. Образование и развитие дефектов
Формат издания: 145х215 мм (средний формат)
Количество страниц: 456
Год выпуска: 2015
ISBN: 978-5-9221-1578-0, 978-5-9221-1570-4
Тираж: 500
Издательство: ФИЗМАТЛИТ,
Редактор: Владимир Левин,
Переплет: Твердый переплет
Язык издания: Русский
Тип издания: Отдельное издание
Количество страниц: 456
Год выпуска: 2015
ISBN: 978-5-9221-1578-0, 978-5-9221-1570-4
Тираж: 500
Издательство: ФИЗМАТЛИТ,
Редактор: Владимир Левин,
Переплет: Твердый переплет
Язык издания: Русский
Тип издания: Отдельное издание
1005 руб.
Пятитомный цикл монографий посвящен изложению моделей и методов для решения нелинейных задач механики деформируемого твердого тела с упором на задачи при больших деформациях и их наложении, а также разработке систем прочностного инженерного анализа (прочностных САЕ).
В первом томе описаны востребованные при промышленном проектировании механические модели и математические постановки задач, в которых при нагружении изменяются границы и граничные условия, свойства части материала тела, происходит изменение массы тела. Приведены решения задач: о развитии в нагруженном теле дефектов с учетом эволюции зон предразрушения; о принудительном изменении формы и массы тела при нагружении; о твердотельных фазовых переходах при больших деформациях с учетом теории Гинзбурга-Ландау. Кратко изложены численные методы, используемые для решения задач в промышленных САЕ: конечного элемента, спектрального элемента, разрывный метод Галёркина, а также подходы для приближенного аналитического решения задач наложения больших деформаций.
Для научных работников, разработчиков систем прочностного инженерного анализа, преподавателей, аспирантов и студентов старших курсов, занимающихся механикой деформируемого твердого тела, теорией прочности, численными методами.
В первом томе описаны востребованные при промышленном проектировании механические модели и математические постановки задач, в которых при нагружении изменяются границы и граничные условия, свойства части материала тела, происходит изменение массы тела. Приведены решения задач: о развитии в нагруженном теле дефектов с учетом эволюции зон предразрушения; о принудительном изменении формы и массы тела при нагружении; о твердотельных фазовых переходах при больших деформациях с учетом теории Гинзбурга-Ландау. Кратко изложены численные методы, используемые для решения задач в промышленных САЕ: конечного элемента, спектрального элемента, разрывный метод Галёркина, а также подходы для приближенного аналитического решения задач наложения больших деформаций.
Для научных работников, разработчиков систем прочностного инженерного анализа, преподавателей, аспирантов и студентов старших курсов, занимающихся механикой деформируемого твердого тела, теорией прочности, численными методами.